On a generalization of \(\text{PHP, } st\)-connectivity, and odd charged graphs

Peter Clote* Antón Setzer \(^{\dagger}\)

1 Introduction

As witnessed by this proceedings, there is currently much interest in the analysis of proof size for tautology families in certain proof systems for propositional logic. The reason is twofold: (1) the analysis of proof size leads to a better understanding of efficiency issues for theorem provers and (2) the development of new combinatorial methods in establishing proof size lower bounds for propositional proof systems may help in better understanding and solving difficult problems in complexity theory (it is well-known that \(NP = co-NP \) if and only if there is a sound, complete propositional proof system which furnishes polynomial size proofs for all tautologies).

In this paper, we consider several proof systems (resolution, cutting planes, and a multiplicative extension of cutting planes), and analyze the proof size of certain combinatorial statements related to the pigeonhole principle and to graph theoretic principles.

The well-known pigeonhole principle \(\text{PHP}_k \) is given by

\[
\bigwedge_{0 \leq i \leq k} \bigvee_{0 \leq j < k} p_{i,j} \rightarrow \bigvee_{0 \leq i < j \leq k} \bigvee_{0 \leq j < k} (p_{i,j} \land p_{i',j}).
\]

In [7], W. Degen gave a natural generalization of the pigeonhole principle, which states that for positive integers \(m, k \) if \(f \) is a function mapping \(\{0, \ldots, m \cdot k\} \) into \(\{0, \ldots, k-1\} \) then there is \(j < k \) for which \(f^{-1}(j) \) has size greater than \(m \).

For ease of notation, non-negative integers will be considered as von Neumann ordinals, so that \(n = \{0, \ldots, n-1\} \), and \([m]^n \) denotes the set of size \(n \) subsets

*Part of this research supported by NSF CCR-9408090, U.S. Czech Science and Technology Grant 93-025, and the Volkswagen Stiftung.

Mailing address: Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 München, GERMANY, clote@informatik.uni-muenchen.de

Key words and phrases: boolean circuit, monotonic circuit, propositional logic, connectivitiy, charged graph.

\(^{\dagger}\)Mailing address: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße 39, D-80333 München, Germany setter@rz.mathematik.uni-muenchen.de
of \{0, \ldots, m - 1\}. Formulated in propositional logic, Degen’s generalization is given by a family \(\{D_{m,k} : k \in \mathbb{N} \} \) where \(D_{m,k} \) is

\[
\bigwedge_{0 \leq i \leq m - k} \bigvee_{0 \leq j < k} p_{i,j} \rightarrow \bigvee_{0 \leq j < k} \bigvee_{I \in [m-k+1]^{m+1}} \bigwedge_{i \in I} p_{k,j}.
\]

W. Degen showed that for \(m \) fixed, over ZF set theory without the axiom of choice, the set theoretic analogue of \(\{D_{m,k} : k \in \mathbb{N} \} \) is properly weaker than the set theoretic analogue of \(\{D_{m+1,k} : k \in \mathbb{N} \} \) when \(m + 1 \) is a prime. The pigeonhole principle, Ajtai’s parity principle, and various modular counting principles have been investigated in boolean circuit complexity and in propositional proof theory, the idea being that counting is a difficult notion to capture in finite depth circuits or proofs. Motivated by Degen’s surprising hierarchy result in set theory, we investigated his principle in propositional logic. This paper establishes that Degen’s principle is of the same strength as the pigeonhole principle. Additionally, we consider a propositional logic formulation of \(st \)-connectivity, and using the Karchmer-Wigderson lower bound for monotonic circuits, furnish an example where tree-like resolution is weaker than resolution (by a different proof, a separation between tree-like resolution and resolution was first given by Tseitin). Finally, we note the similarity of operations allowed in defining graph minors and those in restricted resolution proofs. This raises the question of a graph theoretic characterization of those bounded degree graphs whose Tseitin tautologies require large proofs in resolution or restricted resolution. In this context, we prove a relation between the pigeonhole principle and Tseitin’s odd-charged graphs.

2 Preliminaries

We refer the reader to Krajíček’s book [11] for any undefined terminology. Resolution is a sound, complete refutation system for conjunctive normal form (CNF) formulas – sound, in that if CNF formula \(\phi \) has a resolution refutation, then \(\phi \) is unsatisfiable, and complete, in that every unsatisfiable CNF formula has a resolution refutation. CNF formulas are represented in resolution by a set of clauses containing literals (a literal is a propositional variable or its negation), where the clause \(\{\alpha_1, \ldots, \alpha_n\} \) represents \(\alpha_1 \lor \cdots \lor \alpha_n \). The resolution rule allows the derivation of clause \(C \lor D \) from the clauses \(C \lor \{x\} \) and \(D \lor \{\neg x\} \).

A resolution derivation from \(C_1, \ldots, C_n \) is a sequence of clauses \(D_1, \ldots, D_m \), such that every \(D_i \) is either one of the \(C \)'s, or obtained from \(D_j, D_k \) for \(j, k < i \) by the resolution rule. A resolution refutation of clauses \(C_1, \ldots, C_n \) is a derivation of the empty clause from \(C_1, \ldots, C_n \). By abuse of notation, we say that a disjunctive normal form formula has a resolution proof, if its negation (a CNF formula) has a resolution refutation. A resolution derivation is tree-like if every clause is used at most once in an application of the resolution rule (multiple resolutions on the same clause require multiple derivations of that clause).
The cutting plane proof system, CP, is a sound and complete refutation system for CNF formulas. Propositional variable x_i is represented by itself; $\neg x_i$ is represented by $1 - x_i$; a disjunction $\bigvee_{i \in T} \alpha_i$ of literals is represented by $\sum_{i \in T} R(\alpha_i) \geq 1$, where $R(\alpha_i)$ represents the literal α_i; finally, a CNF formula $\bigwedge_{i \in T} \bigvee_{j \in I_i} \alpha_{i,j}$ is represented by the family

$$\sum_{j \in I_i} R(\alpha_{i,j}) \geq 1$$

of linear inequalities. Without loss of generality, we assume all linear inequalities are of the form $\sum a_i \cdot x_i \geq A$ where $a_i, A \in \mathbb{Z}$. The a_i are the coefficients of the propositional variables, and for lack of a better term, we call A the integer sum. The axioms of CP are $x_i \geq 0$, $-x_i \geq -1$. The rules of inference of CP are

- addition: $\frac{\sum a_i \cdot x_i \geq A \quad \sum b_i \cdot x_i \geq B}{\sum (a_i + b_i) \cdot x_i \geq A + B}$

- division: $\frac{\sum (c \cdot a_i) \cdot x_i \geq A}{\sum a_i \cdot x_i \geq \left\lfloor \frac{A}{c} \right\rfloor}$

where integer $c > 1$,

- multiplication: $\frac{\sum a_i \cdot x_i \geq A}{\sum (c \cdot a_i) \cdot x_i \geq c \cdot A}$

where integer $c > 1$.

A derivation D for inequalities I from inequalities I_1, \ldots, I_m is a sequence $D = (D_0, \ldots, D_n)$ such that for all $i \leq n$ either D_i is an axiom, or one of I_i, \ldots, I_m or inferred from D_j, D_k for $j, k < i$ by means of a rule of inference. A refutation of I_1, \ldots, I_m is a derivation of $0 \geq 1$ from I_1, \ldots, I_m. As in the case of resolution, by abuse of terminology, we say that a disjunctive normal form formula has a CP proof if its negation has a CP refutation. The size of a CP refutation is the sum over all inequalities $\sum a_i \cdot x_i \geq A$ occurring in the refutation of $\sum |a_i| + |A|$, where $|A|$ indicates the length of the binary representation of A. It is easy to see [6] that CP is a sound extension of resolution, hence complete.

3 Cutting plane proofs of Degen’s principle

By $E_{m,k}$ we denote the CP inequalities corresponding to the CNF formula $\neg D_{m,k}$. Thus $E_{m,k}$ is

$$\sum_{j=0}^{k-1} p_{i,j} \geq 1$$
for $0 \leq i \leq m \cdot k$, together with

$$-p_{i_1,j} - p_{i_2,j} - \cdots - p_{i_{m+1},j} \geq -m$$

for $0 \leq j < k$ and $0 \leq i_1 < i_2 < \cdots < i_{m+1} \leq m \cdot k$.

Theorem 1 There are $O(k^5)$ size CP refutations of $E_{2,k}$.

Proof By assumption from $E_{2,k}$, for all $0 \leq i_1 < i_2 < i_3 \leq 2k$ and all $0 \leq r < k$,

$$2 \geq p_{i_1,r} + p_{i_2,r} + p_{i_3,r}.$$

Claim 2 For all $0 \leq i_1 < i_2 < i_3 < i_4 \leq 2k$ and all $0 \leq r < k$,

$$2 \geq p_{i_1,r} + p_{i_2,r} + p_{i_3,r} + p_{i_4,r}.$$

Proof of claim: Fix i_1, i_2, i_3, i_4 and r, and temporarily, set $a = p_{i_1,r}, b = p_{i_2,r},\ c = p_{i_3,r},\ d = p_{i_4,r}$. By assumption from $E_{2,k}$, we have

$$2 \geq a + b + c$$
$$2 \geq b + c + d$$
$$2 \geq a + b + d$$
$$2 \geq a + c + d$$

and so by addition

$$8 \geq 3a + 3b + 3c + 3d$$

and hence by division by 3

$$2 = [8/3] \geq a + b + c + d.$$

\[
\]

For later generalization, note that the pattern of the previous inequalities is of the following form:

$$+ + + -$$
$$- + + +$$
$$+ - + +$$
$$+ + - +$$

where $+$ [resp. $-$] indicates presence [resp. absence] of the corresponding element (i.e. in the first row, there is a, b, c but no d present). In this manner, with $O(k^5)$ (i.e. order $k \cdot (2k+1)$) many proof lines we can show that

$$2 \geq p_{i_1,r} + \cdots + p_{i_4,r}$$

for all rows $0 \leq r < k$ and all 4-tuples $0 \leq i_1 < i_2 < i_3 < i_4 \leq 2 \cdot k$ from that row. In a similar manner, we could show by a proof of $O(k^{s+1})$ lines,
that $2 \geq p_{i_1,r} + \cdots + p_{i_s,r}$, for all rows $0 \leq r < k$ and all distinct s-tuples i_1, \ldots, i_s. However, the overall proof would then be of $\sum_{s=5}^{2k+1} O(k^s)$ lines, hence of exponential size. For that reason, in the following claim, we consider sets i_1, \ldots, i_s of a particular form. Define integers x_1, \ldots, x_m to be consecutive if for all $1 \leq j < m$, $x_{j+1} = x_j + 1$.

Claim 3 Assume that $3 \leq s \leq 2k$ and for all $0 \leq i_1 < \cdots < i_s \leq 2k$ such that i_2, \ldots, i_s are consecutive, and for all $0 \leq r < k$, it is the case that

$$2 \geq p_{i_1,r} + \cdots + p_{i_s,r}.$$

Then for all $0 \leq i_1 < \cdots < i_{s+1} \leq 2k$ such that i_2, \ldots, i_{s+1} are consecutive, and for all $0 \leq r < k$, it is the case that

$$2 \geq p_{i_1,r} + \cdots + p_{i_{s+1},r}.$$

Proof of claim: Fix $0 \leq i_1 < \cdots < i_{s+1}$ and r. By assumption

\[
\begin{align*}
2 & \geq p_{i_1,r} + \cdots + p_{i_s,r} \\
2 & \geq p_{i_2,r} + \cdots + p_{i_{s+1},r} \\
2 & \geq p_{i_1,r} + p_{i_2,r} + \cdots + p_{i_{s+1},r} \\
2 & \geq p_{i_1,r} + p_{i_2,r} + p_{i_{s+1},r}
\end{align*}
\]

Note that the pattern in the previous inequalities is of the following form:

\[
\begin{array}{ccccccc}
+ & + & \cdots & + & - \\
- & + & \cdots & + & + \\
+ & - & \cdots & + & + \\
+ & + & \cdots & - & + \\
\end{array}
\]

The first three inequalities hold by the assumption in the claim, and the fourth (which contains only 3 terms) holds by assumption of $E_{2,k}$. By addition, we have

$$8 \geq 3p_{i_1,r} + \cdots + 3p_{i_{s+1},r}$$

and hence by division by 3

$$2 = \lfloor 8/3 \rfloor \geq p_{i_1,r} + \cdots + p_{i_{s+1},r}.$$

□

By induction on s, using the base case $2 \geq p_{0,r} + p_{i_2,r} + p_{i_{2+1},r}$ for all $0 \leq r < k$ and $0 \leq i_1 < i_2 \leq 2 \cdot k$ (given by $E_{2,k}$), and applying Claim 3 in the inductive case, it follows that for all $0 \leq r < k$,

$$2 \geq p_{0,r} + \cdots + p_{2k,r}. $$
Adding all \(k \) inequalities (one for each \(0 \leq r < k \)), we have
\[
2k \geq \sum_{i=0}^{2k} \sum_{j=0}^{k-1} p_{i,j}.
\]

However, by hypothesis \(E_{2,k} \), for each fixed \(0 \leq i \leq 2k \), \(\sum_{j=0}^{k-1} p_{i,j} \geq 1 \), and by addition of these \(2k + 1 \) inequalities (one for each \(0 \leq i \leq 2k \)), we have
\[
\sum_{i=0}^{2k} \sum_{j=0}^{k-1} p_{i,j} \geq 2k + 1.
\]

Thus we arrive at the contradiction \(2k \geq 2k + 1 \). Rewriting the above proof in the required normal form \(\sum a_{i,j} \cdot p_{i,j} \geq A \) we obtain a derivation of \(0 \geq 1 \) from \(E_{2,k} \).

What is the size of this \(CP \) refutation? In Claim 3, for each fixed \(s \geq 3 \), there are at most \(O(2k) \) choices of \(0 \leq i_1 \leq 2k \) and (by consecutivity) at most \(O(2k) \) choices of the remaining consecutive \(0 \leq i_2, \ldots, i_{s+1} \leq 2k \) with \(i_1 < i_2 \). There are \(k \) many values of \(0 \leq r < k \), so altogether this makes \(O(k^3) \) proof lines for establishing the claim in going from \(s \) to \(s + 1 \). As \(s \leq 2k \), the entire proof requires \(O(k^4) \) lines. The coefficients of the propositional variables have size bounded by \(2 \) (the largest coefficient is \(3 \)). Except in the last two steps, where at most \(2k + 1 \) inequalities are added (producing sums \(2k \) and \(2k + 1 \)), all sums are bounded by \(8 \). Each inequality (proof line) has size \(O(k) \), since coefficients of the variables are bounded by a constant, the integer sum is bounded by \(2k + 1 \), and there are at most \(O(k) \) variables per inequality. Thus the proof size is \(O(k^4 \cdot k) \) or \(O(k^5) \). \(\blacksquare \)

Theorem 4 Let \(m \geq 2 \) and \(n = m \cdot k + 1 \). Then there are \(O(n^{m+3}) \) size \(CP \) refutations of \(E_{m,k} \), where the constant in the \(O \)-notation depends on \(m \), and \(O(n^{m+4}) \) size \(CP \) refutations, where the constant is independent of \(n, m \).

Proof We generalize the proof of the previous theorem.

Claim 5 Assume that \(3 \leq s \leq mk \) and for all \(0 \leq i_1 < \cdots < i_s \leq mk \) such that \(i_m, \ldots, i_s \) are consecutive, and for all \(0 \leq r < k \), it is the case that
\[
m \geq p_{i_1,r} + \cdots + p_{i_s,r}.
\]

Then for all \(0 \leq i_1 < \cdots < i_{s+1} \leq mk \) such that \(i_m, \ldots, i_{s+1} \) are consecutive, and for all \(0 \leq r < k \), it is the case that
\[
m \geq p_{i_1,r} + \cdots + p_{i_{s+1},r}.
\]
Proof of claim: Fix $i_1 < \cdots < i_{s+1}$ and r. We have the following $m + 2$ inequalities:

\[
\begin{align*}
m & \geq p_{i_1, r} + \cdots + p_{i_s, r} \\
m & \geq p_{i_2, r} + \cdots + p_{i_{s+1}, r} \\
m & \geq p_{i_1, r} + p_{i_2, r} + \cdots + p_{i_{s+1}, r} \\
m & \geq p_{i_1, r} + p_{i_2, r} + p_{i_3, r} + \cdots + p_{i_{s+1}, r} \\
m & \geq p_{i_1, r} + \cdots + p_{i_s, r} + p_{i_{s+1}, r} + \cdots + p_{i_{s+1}, r} \\
& \vdots \\
m & \geq p_{i_1, r} + \cdots + p_{i_{m-1}, r} + p_{i_{m+1}, r} + \cdots + p_{i_{s+1}, r} \\
m & \geq p_{i_1, r} + \cdots + p_{i_m, r} + p_{i_{s+1}, r}
\end{align*}
\]

The pattern of terms in the $m + 2$ inequalities above is of the form:

\[
\begin{align*}
+ & + \cdots + + + - \\
- & + \cdots + + + + \\
+ & - + \cdots + + + + \\
+ & + - \cdots + + + + \\
& + - \cdots \cdot \cdot \cdot \\
& + - \cdots \cdot \cdot \cdot \\
& + - \cdots \cdot \cdot \cdot \\
+ & + - \cdots + - + + \\
+ & + + \cdots + + + + \\
& + + + \cdots + - - - \\
& + + + \cdots + + + + \\
& + + + \cdots + - - +
\end{align*}
\]

Removal of any of the first $m - 1$ summands in the term $p_{i_1, r} + \cdots + p_{i_{s+1}, r}$ produces a term where $p_{i_{m, r}}, \ldots, p_{i_{s+1}, r}$ are consecutive. This observation, with the assumption in the claim, justifies the first $m + 1$ inequalities. The last inequality (which contains only $m + 1$ terms) holds by assumption of $E_{m,k}$. By addition, we have

\[
m \cdot (m + 2) \geq (m + 1) \cdot (p_{i_1, r} + \cdots + p_{i_{s+1}, r})
\]

and hence by division by $m + 1$

\[
m = \left\lfloor \frac{m(m + 2)}{m + 1} \right\rfloor \geq p_{i_1, r} + \cdots + p_{i_{s+1}, r}.
\]

\(\square\)

Adding k inequalities $m \geq p_{i_0, r} + \cdots + p_{m, r}$, we have $mk \geq \sum_{i=0}^{m} \sum_{j=0}^{k-1} p_{i, j}$. Similarly adding the $mk + 1$ inequalities $p_{i_0, 0} + \cdots + p_{i_{k-1}, 0} \geq 1$, we have $\sum_{i=0}^{mk} \sum_{j=0}^{k-1} p_{i, j} \geq mk + 1$. Finally, we have the desired contradiction $mk \geq mk + 1$.

7
Let \(n = mk \). In Claim 5, for each fixed \(3 \leq s \leq mk \), there are at most \(O(n^s) \) choices of \(0 \leq i_1 < \cdots < i_s \leq mk \) for which \(i_1, \ldots, i_s \) are consecutive (such sequences are stipulated by choice of \(i_1, \ldots, i_m \)). There are \(k \) many values of \(0 \leq r < k \), so altogether this makes \(O(n^{m+1}) \) proof lines for establishing the claim in going from \(s \) to \(s + 1 \). As \(s \leq mk \), the entire proof requires \(O(n^{m+2}) \) lines. In each proof line (inequality), there are at most \(mk+1 \) variables (hence \(O(k) \), if \(m \) is held as a constant), while the coefficients of the variables are bounded by \(m+1 \), and the integer sum (except in the last steps where \(k \) inequalities are added together) are bounded by \(m(m+2) \). In the last steps involving addition of \(k \) inequalities, the integer sum is bounded by \(mk+1 \), hence the size of each inequality (proof line) in the proof is bounded by \(O(n) \) if \(m \) is held as a constant. It follows that the proof size is \(O(n^{m+2} \cdot n) \) or \(O(n^{m+3}) \), where the constant in the \(O \)-notation depends only on \(m \). The previous considerations yield that the proof size is \(O(n^{m+3} \cdot \log m) \) or \(O(n^{m+4}) \), where the constant in the \(O \)-notation is an absolute constant independent of \(n, m \).

Corollary 6 There are polynomial size CP refutations of \(\{E_{m,k} : m \geq 2, k \geq 1 \} \).

Proof Each application of Claim 3 requires \(m+1 \) additions and one division. Taking this into account, as in the previous analysis, there are then \(O(m \cdot n^{m+3}) \) proof lines, each of size \(O(\log m) \), so the refutation size of \(E_{m,k} \) is \(O(n^{m+4}) \), where the constant in the \(O \)-notation is independent of \(n, m, k \). On the other hand, the size of \(E_{n,k} \) is \(O(n^{m+1}) \). Thus the refutation size is polynomial in the size of the formula being refuted.

Let \([n]^r \) [resp. \([X]^r \)] denote the set of \(r \)-element subsets of \(\{0, \ldots, n-1\} \) [resp. \(X \)]. The Erdős-Rado partition calculus notation \(n \to (m)_k^r \) means that for any partition \(f : [n]^r \to \{0, \ldots, k-1\} \), there is a size \(m \) subset \(X \) of \(\{0, \ldots, n-1\} \) on which \(f \) is constant; i.e. \(f([X]^r) \) has cardinality 1. Using the Erdős-Rado partition calculus notation, PHP can be written as

\[
n + 1 \to (2)_n^1
\]

and Degen’s principle as

\[
mk + 1 \to (m+1)_k^1.
\]

Question 7 Are there polynomial size CP proofs of versions of Ramsey’s theorem

\[
n + 1 \to (m)_k^r
\]

for appropriate \(n, m, r, k \)?
On p. 327 of [3], V. Chvatal gave a cutting planes proof of the instance

\[14 \not\models (3)_2^2 \]
\[15 \models (3)_2^2 \]

of Ramsey’s theorem, and claimed that a general form of Ramsey’s theorem could be proved in cutting planes. Since no details were given, it is unclear whether Chvatal’s intended proof was indeed polynomial size. In [13], P. Pudlák has shown the existence of polynomial size constant depth Frege proofs of an appropriate formulation of Ramsey’s theorem. It appears unlikely that \(CP \) (or \(CPLE \), an extension of cutting planes with limited extension, see [2]) can polynomially simulate constant depth Frege systems. Hence it would be of interest to extend the counting arguments within \(CP \) to prove Ramsey’s theorem and stronger combinatorial theorems.

4 Polynomial equivalence over resolution between Degen’s principle and the pigeonhole principle

In the following we denote the cardinality of a finite set \(S \) by \(|S| \).

Definition 8 The proof system \(Q \) \(p \)-simulates the proof system \(P \) if there is a polynomial time computable function \(f \) such that for all \(x, y \), if \(x \) is a \(P \)-proof of \(y \) then \(f(x, y) \) is a \(Q \)-proof of (the translation of) \(y \). Proof systems \(P, Q \) are \(p \)-equivalent if each \(p \)-simulates the other.

In this section, we show that over resolution, the clausal form of Degen’s principle

\[(\forall f : (mk + 1) \rightarrow k)(\exists i < k)(|f^{-1}(i)| \geq m + 1) \]

is \(p \)-equivalent to the clausal form of the pigeonhole principle

\[(\forall g : (mk + 1) \rightarrow mk)(\exists i < mk)(|g^{-1}(i)| \geq 2). \]

(Note that we identify \(n \) with \(\{0, 1, \ldots, n - 1\} \)).

The idea of proof by contrapositives is quite simple. To show \(\neg D_{m,k} \Rightarrow \neg PHP_{m,k} \), suppose that \(f : (mk + 1) \rightarrow k \) violates Degen’s principle; i.e.,

\[(\forall j < k)(|f^{-1}(j)| \leq m) . \]

Define \(g : (mk + 1) \rightarrow mk \) as follows: \(g(i) = l \cdot k + j \) iff \(f(i) = j \) and this is the \(l \)th such \(i \) (in case \(l = m - 1 \) at least the \(m \)th such \(i \)). In other words, \(g(i) = l \cdot k + j \) iff

\[(l < m - 1 \land f(i) = j \land |f^{-1}(j) \cap i| = l) \text{ or } \]
\[(l = m - 1 \land f(i) = j \land |f^{-1}(j) \cap i| \geq l) . \]
Since f violates Degen’s principle, it follows that g is injective, so g violates the pigeonhole principle. To show $\neg PH_{m,k} \Rightarrow \neg D_{m,k}$, suppose that $g : (mk + 1) \rightarrow m \cdot k$ is injective. It follows that $f(i) := g(i) \mod k$ violates Degen’s principle. In this section, the previous argument of equivalence is formalized within resolution.

Throughout this section, fix k, m and let $n = mk$. In the following definitions, the reader should bear in mind that in the sketch proof that $\neg D_{m,k} \Rightarrow \neg PH_{m,k}$, the p’s encode f, and the q’s encode g; i.e. $p_{i,j} = 1$ if $f(i) = j$ and $q_{i,j} = 1$ iff $g(i) = j$.

Definition 9
(a) In the following formulas denote the clauses equivalent to them. For instance $\bigwedge_{i \in I} p'_i \Rightarrow \bigvee_{i \in J} q'_i$ denotes the clause

$$\{ p'_i : i \in I \} \cup \{ q'_i : i \in J \}$$

(b) The set of defining clauses for $p' \equiv \bigwedge_{i \in I} q'_i$ is the set of clauses

$$\{ p' \rightarrow q'_i : i \in I \} \cup \{ \bigwedge_{i \in I} q'_i \rightarrow p' \}$$

The set of defining clauses for $p' \equiv \bigvee_{i \in I} q'_i$ is the set

$$\{ p' \rightarrow \bigvee_{i \in I} q'_i \} \cup \{ q'_i \rightarrow p' : i \in I \}$$

Definition 10 $\neg D_{m,k}$ is the set of clauses expressing the refutable version of Degen’s principle

$$(\exists f : (n + 1) \rightarrow k)(\forall i < k)(||f^{-1}(i)|| \leq m)$$

so that

$$\neg D_{m,k} := D_{m,k}^0 \cup D_{m,k}^{-1}$$

with

$$D_{m,k}^0 := \{ \bigvee_{j < k} p_{i,j} : i \leq n \}$$

and

$$D_{m,k}^{-1} := \{ \bigvee_{i \in S} \overline{p}_{k,j} : j < k, S \in [n + 1]^{m+1} \}.$$
If $|S| = m - 1$, let $\text{Def}(p^S_{i,j})$ be the set of defining clauses for

$$p^S_{i,j} \equiv p_{i,j} \land \bigwedge_{\ell \in S} p_{\ell',j}.$$

(c) \hspace{1cm} \text{Def}(p^S) := \bigcup_{i \leq n} \bigcup_{j < k} \bigcup_{S \in [i] \subseteq m} \text{Def}(p^S_{i,j}).

(d) For $i \leq n, l < m$, $j < k$ let $\text{Def}(q_{i,j})$ be the set of defining clauses for

$$q_{i,k + j} \equiv \bigvee_{S \in [i]} p^S_{i,j}.$$

(e) \hspace{1cm} \text{Def}(q^j) := \bigcup_{i \leq n} \bigcup_{j < n} \text{Def}(q_{i,j}).

We have: If $f(i) = j$ and $f^{-1}(j) \cap i \supseteq S$, then $p^S_{i,j}$ holds for some $S' \supseteq S$ (which implies, that $q_{i,k + j}$ holds for some l):

Lemma 12 If $i \leq n$, $j < k$, $S \in [i] \subseteq m$, then

$$D_{m,k}^0, \text{Def}(p^S) \vdash (p_{i,j} \land \bigwedge_{\ell \in S} p_{\ell',j}) \rightarrow \bigvee_{S' \subseteq S' \in [i] \subseteq m} p^S_{i,j}.$$

For all possible choices of i, j, S altogether we need $\leq (n + 1)^{m+3}$ resolution steps.

Proof By induction on $(m - 1) - |S|.$

The base case $|S| = m - 1$ is contained in $\text{Def}(p^S_{i,j}).$

For the induction step, assume $|S| = l < m - 1$, and that the theorem is proven for $|S| = l + 1$. Let $A := p_{i,j} \land \bigwedge_{\ell \in S} p_{\ell',j}$.

By $\text{Def}(p^S)$ we have

$$A \land \bigwedge_{\ell \in (i \setminus S)} \rightarrow p^S_{i,j}.$$

By the induction hypothesis follows for $i' \in (i \setminus S)$

$$(A \land p_{\ell',j}) \rightarrow \bigvee_{S' \subseteq S' \in [i'] \subseteq m} p^S_{i,j'}.$$

Now, applying $i - |S|$ resolution steps we deduce the assertion.

To compute the number of resolution steps, note that for every $i \leq n, j < k,$ $l < m, S \in [i]'$, $i - |S| \leq n$ steps are required, and $|[i]'| = \binom{i}{l} \leq (n + 1)^m,$
therefore altogether at most $k \cdot (n+1) \cdot m \cdot (n+1)^m \cdot (n+1) = km(n+1)^{m+2} \leq (n+1)^{m+3}$ steps are required.

From lemma 12 follows now immediately, that $\forall i \leq n \exists y < n . g(i) = y$ (namely $g(i) = lk \cdot j$ if $p_{i,j}^S$ and $||S|| = l$):

Lemma 13 For $i \leq n$

$$\bigvee_{j<k} p_{i,j}, \text{Def}(\overline{p^S}), \text{Def}(q) \vdash \bigvee_{y<n} q_{i,y}$$

for all i altogether in $\leq 3(n+1)^{m+3}$ steps.

Proof By lemma 12, for each fixed i we have $p_{i,j} \rightarrow \bigvee_{S \in [i] < n} p_{i,j}^S$. From this and $\bigvee_{j<k} p_{i,j}$ in k resolution steps we deduce

$$\bigvee_{S \in [i] \leq m} \bigvee_{j<k} p_{i,j}^S$$

By $\text{Def}(q) \ p_{i,j}^S \rightarrow q_{i,k} \cdot ||S|| + j$. In $\sum_{i \leq n} \sum_{j<k} \sum_{i<m} ||i||$ resolution steps we conclude

$$\bigvee_{y<n} q_{i,y}$$

Number of steps needed: For lemma 12 at most $(n+1)^{m+3}$ steps, additionally at most $k \cdot (n+1) \cdot (k + (n+1)^{m+1} \cdot m)$, so altogether at most $3(n+1)^{m+3}$ steps.

We show now that g is injective. First we have that we never get $p_{i,j}^S$ and $p_{i',j}^{S'}$ with $i \neq i'$, $||S|| = ||S'||$:

Lemma 14 Assume $i < i' \leq n$, $j < k$, $S \in [i]'$, $S' \in [i']'$. If $l < m - 1$, then

$$\text{Def}(\overline{p^S}) \vdash \overline{p_{i,j}^S} \lor \overline{p_{i',j}^{S'}}$$

and if $l = m - 1$, then

$$\text{Def}(\overline{p^S}), \ D_{m-1}^{-1} \vdash \overline{p_{i,j}^S} \lor \overline{p_{i',j}^{S'}}.$$

For all possible i, i', j, S together, at most $(n+1)^{2m+3}(m+1)$ steps are needed.

Proof Case $l < m - 1$:

If $S = S'$, then, by $\text{Def}(\overline{p^S})$, we have $p_{i,j}^S \rightarrow p_{i,j}$, since $S' = S \subseteq i$, $i \not\subseteq S'$, and therefore $p_{i,j}^{S'} \rightarrow p_{i,j}$, by resolution $\overline{p_{i,j}^S} \lor \overline{p_{i',j}^{S'}}$.

If $S \neq S'$, it follows, since $||S|| = ||S'||$, that $S \not\subseteq S'$, therefore there exists some
\(i_0 \in (S \setminus S') \), we have \(p_{i_j}^S \rightarrow p_{i_0} \), \(p_{i_j}^S \rightarrow \overline{p_{i_0}} \), again by resolution the assertion.

Case \(l = m - 1 \):
By \(D_{m,k}^{i-1} \)
\[
\bigvee_{i_0 \in S} p_{i_0,j} \lor p_{i_0,j} \lor \overline{p_{i_0,j}},
\]
by Def(\(p^S \)), for \(i_0 \in S \), \(p_{i_0,j}^S \rightarrow p_{i_0,j} \), \(p_{i_0,j}^S \rightarrow p_{i_0,j} \), \(p_{i_0,j}^S \rightarrow p_{i_0,j} \), by \(m + 1 \) resolution steps \(p_{i_0,j}^S \lor p_{i_0,j} \).

Number of steps needed: there are at most
\[
\sum_{i < i' \leq n} \sum_{j < k} \sum_{S \in [i]} \sum_{S' \in [i']} \sum_{S \in [i]} \sum_{S' \in [i']} (m + 1) \leq km (m + 1)(n + 1)^{2m+2} \\
\leq (n + 1)^{2m+2} (n + 1) \text{ steps.}
\]

Lemma 15 If \(i < i' \leq n \), \(y < n \),
\[
\text{Def}(p^S), \text{Def}(q), D_{m,k}^{i-1} \vdash q_{i,y} \lor q_{i',y} .
\]

**All proofs together need (if \(k \geq 2 \)) at most \((n + 1)^{2m+4}\) steps.

Proof By lemma 14, if \(l < m, j < k \), \(S \subseteq [i], S' \subseteq [i'] \) it follows that \(p_{i,j}^S \lor p_{i,j}^S \), further by Def(\(q \)) in \(||[i] < m|| \) resolution steps
\[
q_{i,kl+j} \rightarrow \bigvee_{S \in [i]} p_{i,j}^S ,
\]
therefore
\[
q_{i,kl+j} \rightarrow p_{i,j}^S ,
\]
by Def(\(q \))
\[
q_{i',kl+j} \rightarrow \bigvee_{S' \in [i']} p_{i,j}^S ,
\]
by \(||[i']||\) steps \(q_{i',kl+j} \lor q_{i',kl+j} \).

Number of Steps: steps from lemma 14 at most \((m + 1)(n + 1)^{2m+3}\) steps, additionally
\[
2 \sum_{i < i' \leq n} \sum_{l < m} \sum_{j < k} (||i|| < m \cdot ||i'|| < m) \leq 2(n + 1)^2 \cdot k \cdot m \cdot (n + 1)^{2m} \leq 2(n + 1)^{2m+3}
\]
steps, altogether at most \((n + 1)^{2m+3} \cdot (m + 3)\) steps. \(\blacksquare \)

This completes the formalization in resolution of \(\neg D_{m,k} \Rightarrow \neg PHP_{mk} \). The formalization in resolution of the converse is straightforward and left to the reader. From the analysis of resolution steps and consideration of the number of variables which can appear in any clause, we deduce that \(D_{m,k} \equiv PHP_{mk} \) has resolution proofs of size polynomial in the size of \(D_{m,k} \) and \(PHP_{mk} \).
Note that the proof of equivalence really uses extended resolution, since we introduced polynomially (in n) many new literals $p_{i,j}^k$ and $q_{i,k+j}^k$. The $p_{i,j}^k$ were defined in terms of the original $p_{i,j}$, and the $q_{i,k+j}^k$ were defined in terms of the $p_{i,j}^k$; thus the depth of the extension is 2, and all definitions involve polynomially (in n) many literals. By substituting the defining clauses appropriately, from a derivation of the empty clause from $\neg PHP_{m,k}$ we can obtain a derivation of the empty clause from $\neg D_{m,k}$. It is in this sense we mean that over resolution $PHP_{m,k}$ and $D_{m,k}$ are polynomially equivalent.

Since cutting planes p-simulates resolution, it follows that $D_{m,k} \equiv PHP_{m,k}$ has polynomial size cutting planes proofs (more precisely, cutting planes with extension, where the depth of the extension is 2, and all extending inequalities involve polynomially (in n) many literals; see [5] for information on cutting planes with extension). Since $PHP_{m,k}$ is well-known to have cutting planes proofs of size polynomial in m,k, we have an alternative proof of the main result of the previous section.

5 st-Connectivity

Graph connectivity has been studied under various guises by many authors (Floyd-Warshall’s $O(n^2 \log n)$ algorithm for transitive closure, the well-known observation that the so-called directed graph accessibility problem GAP is complete for nondeterministic logarithmic space, Borodin’s observation that LOGSPACE is contained in AC^1, etc.). In [10], M. Karchmer and A. Wigderson gave a significant size lower bound for boolean circuits computing st-connectivity, the problem whether there is a path from designated nodes s to t in an undirected graph.

Theorem 16 (Karchmer-Wigderson [10]) Monotonic fan-in 2 depth of st-connectivity is $\Theta(\log^2 n)$.

In [18], I. Wegener proved the monotonic analogue of Spira’s theorem which relates depth and size of monotonic formulas: a problem P has depth $O(d)$ monotonic formulas if and only if P has size $2^{O(d)}$ monotonic circuits (see Boppana-Sipser [1] for an overview of boolean circuit complexity). Wegener’s result, with the previous theorem, implies the following.

Corollary 17 (Karchmer-Wigderson [10]) Monotonic formula size of st-connectivity is $\Theta(n^{\log^2 n})$.

Another application of the previous theorem, not used in this paper, is the following result.

Theorem 18 (Clote [4]) The monotonic depth for fan-in 2 circuits recognizing whether a 2-CNF formula is refutable is $\Theta(\log^2 n)$.

14
There are various possible formulations of st-connectivity in propositional logic.

Definition 19 (st-connectivity (Form 1)) Assume that G is a finite undirected graph, with two designated vertices s, t of degree 1, while all other vertices have degree 2. Then there is a path from s to t.

This notion of st-connectivity, proposed by P. Pudlák, was investigated by S. Buss and P. Clote in [2] (this version of st-connectivity for directed graphs was there shown to be equivalent (over constant depth, polynomial size Frege systems) to the onto version of the pigeonhole principle, and polynomial size CP proofs were given for st-connectivity for undirected graphs). An alternate, weaker form of st-connectivity is now defined.

Definition 20 (st-connectivity (Form 2)) Assume that G is a finite undirected graph with two distinct, designated vertices s, t. Then either there is a path from s to t, or there is a partition of the vertices of G into two classes, where s and t lie in different classes and no edge goes between vertices lying in different classes.

We will show that there are polynomial size resolution proofs for st-connectivity (Form 2), though of course, since st-connectivity (Form 1) implies the pigeonhole principle, there is an exponential lower bound for resolution proof size for st-connectivity (Form 1). The formalization in resolution of Definition 20 is now given. The formula $A(p, q)$ is the conjunction of the following clauses:

1. $q_{0,0}$
2. $q_{n+1, n+1}$
3. $\overline{q}_{i,j}, \overline{q}_{i,k},$ for all $j \neq k$ in $\{0, \ldots, n+1\}$.
4. $q_{i,0}, \ldots, q_{i,n+1}$, for all $i \in \{1, \ldots, n\}$.
5. $\overline{q}_{i,j}, \overline{q}_{i+1,k}, p_{j,k}$, for all $j \neq k$ in $\{0, \ldots, n+1\}$.
6. $\overline{p}_{i,j}, r_{j,i}$, for all $i \neq j$ in $\{0, \ldots, n+1\}$.

The idea is that the p's express the edge relation of G ($p_{i,j} = 1$ iff there is a directed edge from i to j), and that the q's define a path from $s = 0$ to $t = n+1$. We allow multiple occurrences of the same vertex along a path. $A(p, q)$ expresses that G is a directed graph and there is a path from s to t.

The formula $B(p, q)$ is the conjunction of the following clauses:

1. r_{0}
2. r_{n+1}
3. $\overline{r}_{i}, \overline{r}_{i,j}, r_{j},$ for all $i \neq j$ in $\{0, \ldots, n+1\}$.
The idea is that the \(p \)'s express the edge relation of \(G \), and the \(r \)'s express the partition: those vertices \(i \) in the same partition class as \(s \) (we identify \(s \) with 0) satisfy \(r_i \), while those in the same class as \(t \) (we identify \(t \) with \(n+1 \)) satisfy \(r_i \). Thus \(B(\overline{p}, \overline{r}) \) expresses that there is a cut (or partition into 2 classes), for which \(s \) [resp. \(t \)] belongs to [resp. does not belong to] the cut, and such that no edge goes from a vertex belonging to the cut to a vertex not belonging to the cut.

The resolution formulation of \(st \)-connectivity (Form 2) is the conjunction of both \(A(\overline{p}, \overline{q}) \), which expresses that either \(G \) is not an undirected graph, or there is a path from \(s \) to \(t \), and \(B(\overline{p}, \overline{r}) \), which states that there is a partition of \(G \)'s vertices, with \(s, t \) in different classes, and for which no edge of \(G \) goes between vertices in different classes. Note that all occurrences of \(\overline{p} \) in the clauses \(B \) are negative.

J. Královič [12] proved an interesting interpolation result, which relates monotonic circuit lower bounds with lower bounds resolution proofs (P. Pudlák [14] extended this to an interpolation result relating monotonic real circuit lower bounds with lower bounds for cutting plane proofs).

Theorem 21 (Královič [12]) Suppose that propositional variables \(\overline{p} \) are positive in \(A(\overline{p}, \overline{q}) \), or that \(\overline{p} \) are negative in \(B(\overline{p}, \overline{r}) \), and that there is a resolution refutation \(P \) of \(A(\overline{p}, \overline{q}) \land B(\overline{p}, \overline{r}) \) of depth \(d \) and size \(s \). Then there is a monotonic boolean circuit \(C \) of depth \(d \) and size \(O(s) \) for which

\[
C(\overline{p}) = \begin{cases}
0 & \text{if } A(\overline{p}, \overline{q}) \text{ is refutable} \\
1 & \text{else if } B(\overline{p}, \overline{r}) \text{ is refutable}
\end{cases}
\]

Moreover, if \(P \) is a proof tree, then the circuit \(C \) has fan-out 1.

By Theorem 21 and Corollary 17 we have the following.

Theorem 22 All tree-like resolution proofs of \(st \)-connectivity (Form 2) have size \(\Omega(n^{\log n}) \).

Proof Let \(s(n) \) be the size of a refutation of \(A(\overline{p}, \overline{q}) \land B(\overline{p}, \overline{r}) \), where the latter expresses the statement that a directed graph \(G \) on \(n \) nodes has a path from \(s \) to \(t \) and at the same time a cut between \(s \) and \(t \). From Theorem 21 there are monotone boolean circuits \(C \) of size \(O(s(n)) \) such that \(C(\overline{a}) = 0 \) implies that \(A(\overline{a}, \overline{q}) \) is refutable and \(C(\overline{a}) = 1 \) implies that \(B(\overline{a}, \overline{r}) \) is refutable. Restricting \(C \) to those inputs \(\overline{a} \) which correctly encode a directed graph \(G \), it follows that \(C(\overline{a}) = 1 \) if and only if there is a path from \(s \) to \(t \). By Corollary 17, it follows that \(s(n) \) must be \(\Omega(n^{\log n}) \). \(\blacksquare \)

The separation between tree-like resolution and resolution is a corollary of the following.

Theorem 23 There are polynomial size resolution proofs of \(st \)-connectivity (Form 2).
Proof We begin by the following claim.

Claim: For $1 \leq i \leq n+1$, there is a resolution proof of $\overline{q}_{i,j},r_j$

The proof of the claim is by induction on i. For the base case of $i = 1$, note that

\[
\frac{q_{0,0}, q_{1,1}, \overline{r}_0}{q_{1,1}, \overline{r}_0, \overline{r}_0, p_{0,0}, \overline{r}_0}
\]

The resolution proof for the base case is $O(n)$ size. Now, the induction hypothesis is $\overline{q}_{i,j},r_j$.

We have the following auxiliary result.

\[
\frac{\overline{q}_{i,j}, \overline{q}_{i+1,k}, p_{j,k}}{\overline{q}_{i,j}, \overline{q}_{i+1,k}, r_j, \overline{r}_j, \overline{r}_k, \overline{r}_0}
\]

Now

\[
\frac{q_{i,0}, \overline{q}_{i,1}, \ldots, \overline{q}_{i,n+1}, \overline{q}_{i+1,k}, \overline{r}_k}{q_{i,1}, \overline{q}_{i,2}, \ldots, \overline{q}_{i,n+1}, \overline{q}_{i+1,k}, r_k, \overline{r}_k}
\]

Inductively continuing in this manner, we obtain $\overline{q}_{i+1,k}, r_k$.

This completes the inductive case. For i,k fixed, there are $O(n)$ additional resolution steps, with overall size $O(n^2)$.

Taking $i = n+1$, it follows that $\overline{q}_{n+1,k}, r_k$ for all k, so that

\[
\frac{\overline{q}_{n+1,n+1}, r_{n+1}, q_{n+1,n+1}}{r_{n+1}, r_{n+1}, \emptyset}
\]

We have thus derived the empty clause by a proof of size $O(n^4)$ from the assumptions. □

17
Corollary 24 *Tree-like resolution does not polynomially simulate resolution.*

See A. Urquhart’s survey article [17] for discussion of Tseitin’s original argument.

6 Tseitin’s odd-charged graphs

In [15], Tseitin associated propositional formulas with labeled undirected graphs, and developed a technique for obtaining lower bounds for regular resolution refutations (regular resolution allows, on any branch of the refutation tree, at most one resolution on any particular variable).

Suppose that G is a finite, undirected graph, whose vertices are labeled by $0,1$ and whose edges are labeled by distinct propositional literals (if literal α labels edge e, then neither α nor $\overline{\alpha}$ can label another edge). The label on a vertex is said to be its charge. The graph G is said to be odd-charged, if the sum modulo 2 of the vertex labels is 1. Figure 1 is an example.

Associate with G its charge equations, i.e. for vertex v the equation $EQ(v)$ states that the sum modulo 2 of the literals incident to v equals the charge on v. For the example in Figure 1, here are the charge equations:

1. $\overline{y} \oplus u = 0$
2. $\overline{y} \oplus x \oplus z = 1$
3. $z = 0$
4. $x \oplus u = 0$

The Tseitin clauses $F(G)$ associated with graph G are the clauses corresponding to the CNF formulation of the charge equations. With this example, we have:

1. $\{\overline{u}, \overline{y}\}, \{u, y\}$
2. $\{x, y, \overline{z}\}, \{x, \overline{y}, z\}, \{\overline{x}, y, z\}, \{x, \overline{y}, \overline{z}\}$

Figure 1: Odd-charged graph with edges labeled by literals
3. \{\tau\}
4. \{x, \Pi\}, \{\tau, u\}

The rule for producing clauses from a charge equation is to place an odd [resp. even] number of negations on the associated literals, if the charge is 0 [resp. 1]. Clearly, there are 2^{d-1} clauses associated with the charge equation for vertex v if the degree of v is d (note that half of the 2^d truth assignments satisfy the charge equation). When considering proof size, we are thus only interested in graph families of bounded degree. The key property of odd-charged graphs is given by the following.

Fact 25 (Tseitin [15, 17]) The connected graph G is odd-charged if and only if the clauses $F(G)$ are unsatisfiable.

In [15], Tseitin developed recurrence relations for regular resolution refutation size, depending on a connectivity parameter for the graphs, and thus proved an exponential lower bound for regular resolution refutations for $F(L_n)$, where L_n is the odd-charged $n \times n$ lattice. In [16], A. Urquhart employed A. Haken’s lower bound technique [8] to prove an exponential lower bound for Tseitin tautologies associated with particular expander graphs. Two interesting questions remain in this area:

1. Are there polynomial size CP refutations for Urquhart’s formulas [16]?
2. For which families of graphs of bounded degree are there superpolynomial lower bounds for resolution [resp. regular resolution] refutations of Tseitin formulas?

Despite Tseitin’s recurrence relations, it seems to be an interesting open problem to determine which graph theoretic properties lead to polynomial size regular resolution proofs.

Lemma 26 Let u, v be two nodes of a charged, labeled, undirected graph G, which are joined by an edge in G labeled by x. Let G' be obtained from G by contracting the edge $\{u, v\}$. In other words, define $V(G') = V(G) - \{u, v\} \cup \{w\}$, where $w \not\in V(G)$ is a new node, and

$$E(G') = E(G) - \{e : u \in e \text{ or } v \in e\} \cup \{\{r, w\} : \{r, u\} \in E(G) \text{ or } \{r, v\} \in E(G)\}.$$

The charge on every node in $V(G') - \{w\}$ is the same as the charge of that node in G, while the charge on w is defined to be

$$\text{charge}(w) \oplus \text{charge}(v).$$

Then there are $2^{d_g(u) + d_g(v) - 3}$ resolution steps to derive the clauses associated with the charge equation $EQ(w)$ in G' from the charge equations $EQ(u), EQ(v)$ in G.

19
The proof of this lemma follows from a simple computation, where positive [resp. negative] occurrences of the edge literal \(x \) in \(EQ(u) \) are resolved against negative [resp. positive] occurrences of \(x \) in \(EQ(v) \). The formal proof is left to the reader.

Definition 27 The graph \(H \) is a minor of the graph \(G \), if \(H \) can be obtained from \(G \) by the operations of deleting an isolated vertex, removing an edge, contracting an edge.

Edge deletions and their relation to regular resolution were first discussed by Tseitin [15, 17], and were the basis of his recurrence relations. Isolated vertices play no role in Tseitin’s formulas, as there is no charge equation for such vertices. Finally, edge contractions can be handled by the previous lemma. From this discussion, it is clear that a precise relation between \(F(G) \) and \(F(H) \) can be worked out, if \(H \) is a minor of \(G \). Moreover, a simple computation, contracting edges beginning with those adjacent to the leaves, shows that the Tseitin formulas \(F(G_n) \) have linear size regular resolution refutations, for families \(\{G_n : n \in \mathbb{N}\} \) of bounded degree odd-charged trees. This follows from the next proposition.

Proposition 28 Let \(T \) be a rooted, odd-charged binary tree with \(n \) nodes and degree bound \(e \). Then there are regular resolution refutations of \(F(T) \) consisting of at most \(n(2^e - 1) \) steps.

Proof Contract edges, beginning with the leaves of \(T \). By Lemma 26, the number of resolution steps required to contract the edge connecting a leaf (of degree 1) with its parent is \(2^{e-1} \). For that parent, there are respectively \(2^{e-2} \), \(2^{e-3} \), etc. many steps in contracting sibling leaves with the same parent. Thus an upper bound for the number of resolution steps required to derive the empty clause is the number of internal nodes of \(T \) times \(\sum_{i=0}^{e-1} 2^i \), so bounded by \(n(2^e - 1) \).

Hence, it seems possible that one could classify via graph theoretic properties those families of bounded degree connected graphs whose associated Tseitin formulas have polynomial size regular resolution refutations. Noting the correspondence in regular resolution with operations in the definition of graph minor, certain techniques may be applicable from the Robertson-Seymour theorem that the collection of all finite graphs is well quasi-ordered under graph minors.

As a small step in this direction, we describe degree 3 graphs whose Tseitin formulas correspond to the pigeonhole principle, and for which there are no polynomial size resolution (or even constant depth Frege) proofs. As shown in Figure 2, the graph \(G_n \) consists of \(n + 1 \) top trees \(B_i \), and \(n \) bottom trees \(C_j \), both indicated by triangles. \(B_i \) is responsible for mapping the \(i \)-th pigeon, and \(C_j \) is responsible for the \(j \)-th hole. The \(j \)th leaf of \(B_i \) is connected with the \(i \)th
Figure 2: Global view of Tseitin graph representing PHP_n

Figure 3: Local view of Tseitin graphs for the B’s

Figure 4: Local view of Tseitin graphs for C’s
leaf of C_j. The B’s themselves are shown in Figure 3 and the C’s are shown in Figure 4. The trees B_i have n leaves each, therefore $2n - 1$ nodes, whereas the trees C_i have $n + 1$ leaves and $2n + 1$ nodes. The jth leaf of B_i has number $\text{leaf}_{B}(j) := n - 1 + j$ and the ith leaf of C_j has number $\text{leaf}_{C}(i) := n + i$. Therefore G_n has vertices

$$\{(b, i, j) : 1 \leq i \leq n + 1, 1 \leq j \leq 2n - 1\} \cup \{(c, i, j) : 1 \leq i \leq n, 1 \leq j \leq 2n + 1\}$$

and edges from the following three sets:

$$\{\langle b, i, \lfloor j/2 \rfloor \rangle, \langle b, i, j \rangle \} : 1 \leq i \leq n + 1, 2 \leq j \leq 2n - 1\}$$

and

$$\{\langle c, i, \lfloor j/2 \rfloor \rangle, \langle c, i, j \rangle \} : 1 \leq i \leq n, 2 \leq j \leq 2n + 1\}$$

and

$$\{\langle b, i, \text{leaf}_{B}(j) \rangle, \langle c, j, \text{leaf}_{C}(i) \rangle \} : 1 \leq i \leq n + 1, 1 \leq j \leq n\}.$$

We assign propositional variables to the edges of G_n as follows: $p_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle}$ labels the edge from $\lfloor j/2 \rfloor$ to j in the tree B_i; $q_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle}$ labels the edge from $\lfloor j/2 \rfloor$ to j in the tree C_i; and $r_{\langle i, \text{leaf}_{B}(j) \rangle, \langle j, \text{leaf}_{C}(i) \rangle}$ is responsible for connecting leaf j of B_i to leaf i of C_j. Here, the propositional variable sets are given as follows:

$$\{p_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle} : 1 \leq i \leq n + 1, 2 \leq j \leq 2n - 1\}$$

and

$$\{q_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle} : 1 \leq i \leq n, 2 \leq j \leq 2n + 1\}$$

and

$$\{r_{\langle i, \text{leaf}_{B}(j) \rangle, \langle j, \text{leaf}_{C}(i) \rangle} : 1 \leq i \leq n + 1, 1 \leq j \leq n\}.$$

Let each of $\langle b, i, 1 \rangle$ for $1 \leq i \leq n + 1$, and $\langle c, j, 1 \rangle$ for $1 \leq j \leq n$ have charge 1, and all other nodes have charge 0. The edges of G_n are labeled in the obvious manner (eg. $\langle b, i, \lfloor j/2 \rfloor \rangle$, $\langle b, i, j \rangle$ is labeled by $p_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle}$ etc.). Therefore G has odd charge $2n + 1$ and we have the following charge equations:

(1) \hspace{1cm} p_{\langle i, 1 \rangle, \langle i, 2 \rangle} \oplus p_{\langle i, 1 \rangle, \langle i, 3 \rangle} = 1

for all $1 \leq i \leq n + 1$,

(2) \hspace{1cm} q_{\langle i, 1 \rangle, \langle i, 2 \rangle} \oplus q_{\langle i, 1 \rangle, \langle i, 3 \rangle} = 1

for all $1 \leq i \leq n$,

(3) \hspace{1cm} p_{\langle i, \lfloor j/2 \rfloor \rangle, \langle i, j \rangle} \oplus p_{\langle i, j \rangle, \langle i, 2j \rangle} \oplus p_{\langle i, j \rangle, \langle i, 2j + 1 \rangle} = 0

22
for all $1 \leq i \leq n+1, 2 \leq j \leq n-1$,

$$q(i, [j/2]), (i, j) \oplus q(i, j), (i, 2j) \oplus q(i, j), (i, 2j+1) = 0$$

for all $1 \leq i \leq n, 2 \leq j \leq n$,

$$(5) \quad P_{\langle i, [j/2] \rangle, (i, j)} \oplus P_{\langle i, [j/2] \rangle, (i, j)} \oplus P_{\langle i, [j/2] \rangle, (i, j)} = 0$$

for all $1 \leq i \leq n+1, \text{and } 1 \leq j \leq n$,

$$(6) \quad r_{\langle i, \text{leaf}_B(j) \rangle, (j, \text{leaf}_C(i))} \oplus q_{\langle j, [\text{leaf}_C(j)] \rangle, (j, \text{leaf}_C(i))} = 0$$

for all $1 \leq i \leq n+1, \text{and } 1 \leq j \leq n$.

The set of G_n's vertices has cardinality $(n+1)2n - 1 + n2n + 1 = 0(n^2)$
and each node has degree at most 3.

We claim that there are polynomial size resolution derivations of $F(G_n)$ from
$\neg PHP_n$ - recall that the Tseitin formula $F(G_n)$ is refutable, whereas PHP_n is
a tautology.

To this end, for $1 \leq i \leq n+1, 2 \leq j \leq 2n-1$ let

$$(7) \quad P_{\langle i, [j/2] \rangle, (i, j)} \equiv \bigvee_{\{1 \leq k \leq n; \text{leaf}_B(k)\}} P_{i, k}$$

where $u \sqsubseteq v$ means that u is a prefix of v (integer u is a prefix of integer v
if the binary representation of u is a prefix of the binary representation of v).

The idea is that the leaves of the tree B_{i_0} are labeled by $P_{i_0, 1}, P_{i_0, 2}, \ldots, P_{i_0, n}$
and that an edge $p_{\langle \overline{i, [j/2] \rangle, (i, j)}$ between node $\langle b, i, [j/2] \rangle$ and node $\langle b, i, j \rangle$ of B_{i_0}
has the value 1 iff $\langle b, i, [j/2] \rangle$ is the ancestor of a leaf bearing the value 1. For
$1 \leq j \leq n, 2 \leq i \leq 2n + 1$ let

$$(8) \quad q_{\langle j, [i/2] \rangle, (j, i)} \equiv \bigvee_{\{1 \leq k \leq n+1; \text{leaf}_C(k)\}} P_{k, j}$$

Similarly, the idea is that the leaves of the tree C_{j_0} are labeled by $P_{1, j_0}, P_{2, j_0}, \ldots, P_{n+1, j_0}$
and that an edge $p_{\langle \overline{c, j, [i/2] \rangle, (j, i)}$ between internal nodes of C_{j_0} has the value 1 iff
$c, j, [i/2] \rangle$ is the ancestor of a leaf bearing the value 1. For $1 \leq i \leq n+1, 1 \leq j \leq n$ let

$$(9) \quad r_{\langle i, \text{leaf}_B(j) \rangle, (j, \text{leaf}_C(i))} \equiv P_{i, j}.$$

The function of the r's is to connect up leaves of the B's with those of the C's,
where leaf the j-th leaf of B_i (labeled by $P_{i, j}$) is connected to the i-th leaf of C_j.

Finally, let $DEF(G_n)$ be the resolution clauses corresponding (as in Section 4)
to the above definitions.
Definition 29 The negation of the onto-version of the pigeonhole principle, denoted $\neg PHP_{n}^{onto}$, states that there is a bijection from $\{1, \ldots, n+1\}$ onto $\{1, \ldots, n\}$, and is given by the following clauses:

$$\{(P_{i,1}, \ldots, P_{i,n}) : 1 \leq i \leq n+1\} \cup \{(P_{i,j}, P_{i,j'}) : 1 \leq i < i' \leq n+1, 1 \leq j \leq n\}$$

together with

$$\{(P_{1,j}, \ldots, P_{n+1,j}) : 1 \leq j \leq n\} \cup \{(P_{i,j}, P_{i,j'}) : 1 \leq i \leq n, 1 \leq j < j' \leq n\}.$$

Note that the onto version of the pigeonhole principle requires a bijection (not simply injection) from the domain of size $n+1$ to range of size n. In contrast to the formalization of PHP_{n}, we have $1 \leq i \leq n+1$ and $1 \leq j \leq n$ to allow a simple correspondence with the trees B_{i} and C_{j}.

Theorem 30 There are polynomial size resolution derivations of $F(G_{n})$ from $DEF(G_{n})$ and $\neg PHP_{n}^{onto}$.

Proof For $1 \leq j \leq n$, by Equation (7)

$$P_{(i, \text{leaf}_{B}(j)), (i, \text{leaf}_{B}(j))} \equiv P_{i,j}$$

and by Equation (9)

$$P_{(i, \text{leaf}_{B}(j)), (j, \text{leaf}_{C}(i))} \equiv P_{(i, \text{leaf}_{B}(j)), (i, \text{leaf}_{B}(j))}.$$

This proves Equation (5). Equation (6) is similarly derived. Thus we’ve established the charge equations for the connection between appropriate trees B_{i} to C_{j}.

Fix $1 \leq i \leq n+1$. Equations (1) and (3) respectively correspond to the charge equation at the root and the charge equations at non-root internal nodes of the tree B_{i}. Consider first Equation (1). To simplify notation, write d resp. e in place of $P_{(i,1), (i,2)}$ resp. $P_{(i,1), (i,3)}$, and let $P_{a, P_{a+1}, \ldots, P_{b}}$ resp. $P_{b+1, \ldots, P_{c}}$ denote the leaf labels in B_{i} below d resp. e (hence the P’s correspond to appropriate $P_{i,j}$’s). With this notation, Equation (7) states that $d \equiv P_{a} \lor \cdots \lor P_{b}$ and $e \equiv P_{b+1} \lor \cdots \lor P_{c}$, so from its clausal form in $DEF(G_{n})$,

$$\{\overline{d}, P_{a}, \ldots, P_{b}\}.$$

Repeatedly resolve this clause against clauses

$$\{P_{a}, P_{b+1}\}, \{P_{a+1}, P_{b+1}\}, \{P_{a+2}, P_{b+1}\}, \ldots, \{P_{b}, P_{b+1}\}$$

(these clauses come from $\neg PHP_{n}^{onto}$) to obtain $\{\overline{d}, P_{b+1}\}$. In a similar fashion, obtain $\{\overline{d}, P_{b+2}\}, \{\overline{d}, P_{b+3}\}, \ldots, \{\overline{d}, P_{c}\}$. From $DEF(G_{n})$, we have $\{\overline{d}, P_{b+1}, \ldots, P_{c}\}$, so by repeated resolution against the previous clauses, we obtain $\{\overline{d}, \overline{e}\}$.

24
From $\neg PHP_n^{onto}$, we have $\{P_0, \ldots, P_c\}$, and from $DEF(G_n)$ we have $\{\mathcal{P}_a, d\}, \ldots, \{\mathcal{P}_b, e\}$ and $\{\mathcal{P}_{b+1}, e\}, \ldots, \{\mathcal{P}_c, e\}$. Repeatedly resolving the former against the latter, we obtain $\{d, e\}$. Now $\{d, e\}$ and $\{\overline{d}, \overline{e}\}$ form the clausal representation of the charge equation (1) $d \oplus e = 1$. In a similar fashion (using the onto part of the formulation of the pigeonhole principle) one can prove Equation (2). This concludes the derivation of charge equations for roots of the B_i and C_j.

Consider now Equation (3). To simplify notation, write d, e, f resp. for $P(i, i/2), (i, j), P(i, j), (i, 2j), P(i, 2j), (i, 2j+1)$, and let P_a, \ldots, P_b resp. P_{b+1}, \ldots, P_c denote the leaves of tree B_i respectively below e, f. Thus the leaves below d are P_a, \ldots, P_c. The clausal representation of Equation (3) has the following clauses:

1. $\{\overline{d}, e, f\}$
2. $\{d, \overline{e}, f\}$
3. $\{d, e, \overline{f}\}$
4. $\{\overline{d}, \overline{e}, \overline{f}\}$

The first clause is simple to obtain. From $DEF(G_n)$ we have $\{\overline{d}, P_a, \ldots, P_c\}$ and $\{\overline{d}, e\}$, $\{\overline{d}, e\}$, $\{\overline{d}, e\}$, $\{\overline{d}, e\}$ and $\{\overline{d}, e\}$, $\{\overline{d}, e\}$, $\{\overline{d}, e\}$. By resolution of the former against the latter, we have $\{\overline{d}, e, f\}$. The second and third clauses are similarly derived. To obtain the fourth clause, proceed as follows. By $DEF(G_n)$, we have $\{d, P_a, \ldots, P_b\}$ and from $\neg PHP_n^{onto}$ we have $\{\overline{d}, \overline{P_a}, \overline{P_{b+1}}\}$, $\{\overline{d}, \overline{P_{b+1}}, \overline{P_{b+1}}\}$, $\{\overline{d}, \overline{P_{b+1}}, \overline{P_{b+1}}\}$ and so by resolution we obtain $\{\overline{d}, \overline{P_{b+1}}\}$. Similarly, we obtain $\{\overline{d}, \overline{P_{b+2}}, \ldots, \overline{d}, \overline{P_c}\}$, and in an analogous fashion $\{\overline{d}, \overline{P_a}, \ldots, \overline{d}, \overline{P_c}\}$.

By $DEF(G_n)$, we have $\{d, P_a, \ldots, P_c\}$ and so by repeated resolution against the preceding clauses, we derive $\{\overline{d}, \overline{e}, \overline{f}\}$, as required. This establishes Equation (3). The derivation of Equation (4) is analogous. This completes our treatment of the charge equations for non-root internal nodes of trees B_i and C_j.

Thus we have a resolution derivation of $F(G_n)$ from $DEF(G_n)$ and $\neg PHP_n^{onto}$. Straightforward estimation shows that the sketched resolution proof is of polynomial size.

Corollary 31 There is an exponential lower bound for resolution (even constant depth Frege) refutations of $F(G_n)$.

The corollary is immediate, since it is well-known that $\neg PHP_n^{onto}$ has an exponential size lower bound for resolution (and constant depth Frege) refutations. See [11] for details.

From this construction, one might think that for every unsatisfiable propositional formula H there is a related odd charged graph G, for which $H \rightarrow F(G)$ has a polynomial size resolution (or constant depth Frege) derivation. This however is false, unless $NP = coNP$.

25
Proposition 32 For any polynomials \(p, q \) there exists an unsatisfiable propositional formula \(H \) such that for all odd charged graphs \(G \) of size at most \(q(|H|) \), there is a resolution (or constant depth Frege, or Frege, etc.) derivation of \(H \rightarrow F(G) \), where \(F(G) \) is the Tseitin formula related to \(G \).

Proof If not, then we have an NP-procedure to test whether a formula \(\phi \) is a tautology: \(\phi \in \text{TAUT} \iff \lnot \phi \not\in \text{SAT} \iff \) there is odd charged \(G \) of size \(q(|\phi|) \) and a resolution (or constant depth Frege, or Frege, etc.) derivation of \(\lnot \phi \rightarrow F(G) \).

7 Acknowledgements

We would like to thank A. Haken, J. Krajíček, P. Pudlák and A.A. Razborov for comments, and especially W. Degen, for relating his hierarchy results concerning the Degen principle, and for a preliminary copy of [7]. Thanks to J. Krajíček and P. Pudlák for a preliminary copy of their unpublished typescripts. Special thanks to J. Johannsen for sending his unpublished manuscript, which raised the question of how Degen’s principle relates to the pigeonhole principle, over constant depth Frege systems. Thanks as well to the referee for suggestions.

In his manuscript, Johannsen made some observations concerning \(I\Delta_0 \) provability that \(D_{m+1,k} \rightarrow D_{m,k} \); since it follows from this paper, that \(I\Delta_0 \) proves the equivalence of the pigeonhole principle and Degen’s principle, we have answered Johannsen’s principal question. The resolution proofs were typeset using \LaTeX\ macros developed by S. Buss.
References

27